Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{\cos x - \sin x}{1 + \sin \left( 2x \right)} \right)dx\]
\[ \Rightarrow \int\left( \frac{\cos x - \sin x}{\cos^2 x + \sin^2 x + 2 \sin x . \cos x} \right)dx\]
\[ \Rightarrow \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[Let \cos x + \sin x = t\]
\[ \Rightarrow \left( - \sin x + \cos x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( - \sin x + \cos x \right) dx = dt\]
\[Now, \int\frac{\left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)^2}dx\]
\[ = \int\frac{dt}{t^2}\]
\[ = \int t^{- 2} dt\]
\[ = \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{- 1}{t} + C\]
\[ = - \frac{1}{\sin x + \cos x} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
Evaluate the following integral:
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]