मराठी

∫ Sin M X Cos N X D X M ≠ N - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
बेरीज

उत्तर

\[\int\text{sin }\left( mx \right) \cdot \text{cos} \left( nx \right) dx\]
\[ = \frac{1}{2}\int2 \text{sin} \left( mx \right) \cdot \text{cos} \left( nx \right)dx\]
\[ = \frac{1}{2}\int\left[ \text{sin} \left( mx + nx \right) + \text{sin} \left( mx - nx \right) \right]dx \left[ \therefore \text{2 sin A }\cdot \text{cos B} = \text{sin} \left( A + B \right) + \text{sin} \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ - \frac{\text{cos} \left( m + n \right)x}{m + n} - \frac{\text{cos} \left( m - n \right)x}{m - n} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.07 | Q 4 | पृष्ठ ३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×