मराठी

∫ 1 ( X 2 + 1 ) √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \sqrt{x}}\]
\[\text{ Putting  x }= t^2 \]
\[dx = 2t \text{ dt }\]
\[ \therefore I = \int \frac{2t \text{ dt }}{\left[ \left( t^2 \right)^2 + 1 \right]t}\]
\[ = 2\int \frac{dt}{t^4 + 1}\]
\[ = \int \left[ \frac{\left( t^2 + 1 \right) - \left( t^2 - 1 \right)}{\left( t^4 + 1 \right)} \right]dt\]
\[ = \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\left( \frac{t^2 - 1}{t^4 + 1} \right)dt\]
\[\text{Dividing numerator & denominator by }t^2 \]
\[I = \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2}}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting t }- \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]
\[\text{ Putting  t }+ \frac{1}{t} = q\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]
\[ \therefore I = \int\frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t^2 - 1}{\sqrt{2}t} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x - 1}{\sqrt{2x}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{x - \sqrt{2x} + 1}{x + \sqrt{2x} + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 6 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×