Advertisements
Advertisements
प्रश्न
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
बेरीज
उत्तर
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[ = \int\left( \frac{1 - \cos \left( 4x + 10 \right)}{2} \right)dx \left[ \therefore \sin^2 A = \frac{1 - \cos2A}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 - \cos \left( 4x + 10 \right) \right)dx\]
\[ = \frac{1}{2}\left[ x - \frac{\sin \left( 4x + 10 \right)}{4} \right] + C\]
\[ = \frac{1}{2}x - \frac{\sin \left( 4x + 10 \right)}{8} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^6 x \text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \cos^3 (3x)\ dx\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]