मराठी

∫ Sin 2 ( 2 X + 5 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]
बेरीज

उत्तर

\[\int \text{sin}^2 \left( 2x + 5 \right)   \text{dx}\]
\[ = \int\left( \frac{1 - \cos \left( 4x + 10 \right)}{2} \right)dx \left[ \therefore \sin^2 A = \frac{1 - \cos2A}{2} \right]\]
\[ = \frac{1}{2}\int\left( 1 - \cos \left( 4x + 10 \right) \right)dx\]
\[ = \frac{1}{2}\left[ x - \frac{\sin \left( 4x + 10 \right)}{4} \right] + C\]
\[ = \frac{1}{2}x - \frac{\sin \left( 4x + 10 \right)}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.06 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.06 | Q 1 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×