मराठी

∫ X 2 + X + 5 3 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
बेरीज

उत्तर

\[\int\frac{\left( x^2 + x + 5 \right)}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\int\frac{9 x^2 + 9x + 45}{\left( 3x + 2 \right)}dx\]
\[ = \frac{1}{9}\left[ \int\frac{9 x^2 - 4}{3x + 2}dx + \int\frac{9x + 6}{3x + 2}dx + \int\frac{43}{3x + 2}dx \right]\]
\[ = \frac{1}{9}\left[ \int\frac{\left( 3x - 2 \right)\left( 3x + 2 \right)}{\left( 3x + 2 \right)}dx + \int\frac{3\left( 3x + 2 \right)}{3x + 2}dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \int\left( 3x - 2 \right) dx + 3\int1dx + 43\int\frac{dx}{3x + 2} \right]\]
\[ = \frac{1}{9}\left[ \left( 3\frac{x^2}{2} - 2x \right) + 3x + \frac{43}{3} \text{ln}\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{9}\left[ \frac{3}{2} x^2 + x - \frac{43}{3} \text{ln }\left| 3x + 2 \right| + C \right]\]
\[ = \frac{1}{6} x^2 + \frac{1}{9}x - \frac{43}{27} \text{ln }\left| 3x + 2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.04 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.04 | Q 3 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫   tan   x   sec^4  x   dx  `


` ∫      tan^5    x   dx `


\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×