मराठी

∫ Cot 6 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^6 x \text{ dx }\]
बेरीज

उत्तर

∫ cot6 x dx
= ∫ cot4 x . (cosec2 – 1) dx
= ∫ cot4 x × cosec2 x dx – ​∫ cot4 x dx 

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ​∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ cot2 x dx

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx

First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
Let cot x = t

⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ ​t4 dt + ​∫ t2 dt

\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]

Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
   = – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2

\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C_1 + C_2\]
\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.11 | Q 12 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×