Advertisements
Advertisements
प्रश्न
उत्तर
∫ cot6 x dx
= ∫ cot4 x . (cosec2 x – 1) dx
= ∫ cot4 x × cosec2 x dx – ∫ cot4 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx
First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ t4 dt + ∫ t2 dt
\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]
Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
= – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `