मराठी

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^5 x  \text{ dx }\]
बेरीज

उत्तर

∫ cot5 x dx
= ∫ cot4 x . cot x dx 

= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx

= ∫ cosec4 x . cot x dx – 2 ​∫ cot x . cosec2 x dx + ​∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ​∫ cot x cosec2 x dx + ∫​ cot x dx

=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx

Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1

I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt

⇒ cosec2 x dx = – dt

I1= ∫ (t + t3) (– dt) – 2​∫ t (–dt)
= –∫(t + t3) + 2​∫t dt

\[= \left[ - \frac{t^2}{2} - \frac{t^4}{4} \right] + 2 . \frac{t^2}{2} + C_1 \]
\[ = \frac{t^2}{2} - \frac{t^4}{4} + C_1 \]
\[ = \frac{\cot^2 x}{2} - \frac{\cot^4 x}{4} + C_1\]

Now we integrate I2
I2= ∫ cot x dx

= \[\log\left| \sin x \right| + C_2\]

Now, ∫ cot5 x dx=I1 + I2]

\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \text{sin x }\right| + C_1 + C_2\]
\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \sin x \right| + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.11 | Q 11 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×