मराठी

∫ ( Tan X + Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( \tan x + \cot x \right)^2 dx\]
बेरीज

उत्तर

\[\int \left( \tan x + \cot x \right)^2 \]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right)dx\]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \right)dx\]
\[ = \int\left[ \left( \sec^2 x - 1 \right) + \left( {cosec}^2 x - 1 \right) + 2 \right]dx\]
\[ = \int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ = \tan x - \cot x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 25 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×