मराठी

∫ 1 Sin X + Sin 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{1}{\sin x + \sin 2x}dx\]

\[ = \int\frac{1}{\sin x + 2 \sin x \cos x}dx\]

\[ = \int\frac{1}{\sin x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\text{ sin  x  dx }}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 1 + 2 \cos x \right)}\]

\[\text{ Putting  cos  x } = t\]

\[ \Rightarrow - \text{ sin  x  dx } = dt\]

\[ \Rightarrow \text{ sin  x  dx } = - dt\]

\[\therefore I = - \int\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 1 + 2t \right)}dt\]
\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)}dt\]
\[ \therefore \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{2t + 1}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 2t + 1 \right) + B \left( t - 1 \right) \left( 2t + 1 \right) + C \left( t - 1 \right) \left( t + 1 \right)\]
\[\text{ Putting  t + 1 = 0 or t = - 1}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( - 2 + 1 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( 2 \right)\]
\[ \therefore B = \frac{1}{2}\]
\[\text{ Now, putting t - 1 = 0 or t = 1 }\]
\[ \Rightarrow 1 = A \left( 2 \right) \left( 3 \right) + B \times 0 + C \times 0\]
\[ \therefore A = \frac{1}{6}\]
\[\text{ Now, putting 2t + 1 = 0 or t} = - \frac{1}{2}\]
\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{1}{2} - 1 \right) \left( - \frac{1}{2} + 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{3}{2} \right) \left( \frac{1}{2} \right)\]
\[ \therefore C = - \frac{4}{3}\]
\[ \therefore I = \frac{1}{6}\int\frac{1}{t - 1}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{4}{3}\int\frac{1}{2t + 1}dt\]
\[ = \frac{1}{6} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{4}{3} \text{ ln} \frac{\left| 2t + 1 \right|}{2} + C\]
\[ = \frac{1}{6} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ ln} \left| t + 1 \right| - \frac{2}{3} \text{ ln } \left| 2t + 1 \right| + C\]
\[ = \frac{1}{6}\text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln} \left| \cos x + 1 \right| - \frac{2}{3} \text{ ln }\left| 2 \cos x + 1 \right| + C \left[ \because t = \cos x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 67 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \sec^6 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×