मराठी

∫ 1 √ 3 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{dx}{\sqrt{3} \sin x + \cos x}\]
\[\text{ Putting sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and cos x} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{\sqrt{3}\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2\sqrt{3} \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{- \tan^2 \frac{x}{2} + 2\sqrt{3} \tan \frac{x}{2} + 1}dx\]

\[\text{ Let tan} \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{- t^2 + 2\sqrt{3}t + 1}\]
\[ = - 2\int \frac{dt}{t^2 - 2\sqrt{3}t - 1}\]
\[ = - 2\int\frac{dt}{t^2 - 2\sqrt{3}t + \left( \sqrt{3} \right)^2 - \left( \sqrt{3} \right)^2 - 1}\]
\[ = - 2\int \frac{dt}{\left( t - \sqrt{3} \right)^2 - \left( 2 \right)^2}\]
\[ = - \frac{2}{2 \times 2}\text{ log }\left| \frac{t - \sqrt{3} - 2}{t - \sqrt{3} + 2} \right| + C\]

\[= - \frac{1}{2}\text{ log}\left| \frac{\tan\frac{x}{2} - 2 - \sqrt{3}}{\tan\frac{x}{2} + 2 - \sqrt{3}} \right| + C\]
\[ = \frac{1}{2}\text{ log}\left| \frac{\tan\frac{x}{2} + 2 - \sqrt{3}}{\tan\frac{x}{2} + 2 - \sqrt{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.23 | Q 13 | पृष्ठ ११७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×