मराठी

∫ 1 E X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{e^x + 1} \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{1}{e^x + 1}dx . . . (1)\]

Multiplying numerator and Denominator of eq (1) by ex

\[\Rightarrow \int\frac{e^x \cdot dx}{e^x \left( e^x + 1 \right)}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow \int\frac{dt}{t \left( t + 1 \right)}\]
\[ \therefore \frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[\frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + B t}{t \left( t + 1 \right)} . . . (2)\]
\[ \Rightarrow 1 = A \left( t + 1 \right) + B t\]
\[\text{ Putting  t } + 1\ = 0\text{ or}\, t\ = - 1\text{ in  eq  (2)  we  get}  , \]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{ Now , putting  t = 0  in  eq  (2) we get , } \]
\[ \Rightarrow 1 = A \left( 0 + 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[\text{ Putting  the  values  of  A  and  B  in eq (2) we  get } , \]
\[\frac{1}{t \left( t + 1 \right)} = \frac{1}{t} - \frac{1}{t + 1}\]
\[ \therefore \int\frac{dt}{t \left( t + 1 \right)} = \int\frac{dt}{t} - \int\frac{dt}{t + 1}\]
\[ = \text{ ln }\left| t \right| - \text{ ln }\left| t + 1 \right| + C\]
\[ = \text{ ln }\left| \frac{t}{t + 1} \right| + C\]
\[ = \text{ ln }\left| \frac{e^x}{e^x + 1} \right| + C\]
\[ = \text{ ln }e^x - \text{ ln }\left| e^x + 1 \right| + C\]
\[ = x - \text{ ln} \left| e^x + 1 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 16 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×