मराठी

∫ X + 1 √ 2 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
बेरीज

उत्तर

\[\int\left( \frac{x + 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 2}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3 - 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3}{\sqrt{2x + 3}} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \sqrt{2x + 3} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\left[ \int \left( 2x + 3 \right)^\frac{1}{2} dx - \int \left( 2x + 3 \right)^{- \frac{1}{2}} dx \right]\]
\[ = \frac{1}{2}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} - \frac{\left( 2x + 3 \right)^{- \frac{1}{2} + 1}}{2\left( - \frac{1}{2} + 1 \right)} + C \right]\]
\[ = \frac{1}{2}\left[ \frac{1}{3} \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x + 3 \right)^\frac{1}{2} + C \right]\]
\[ = \frac{1}{6} \left( 2x + 3 \right)^\frac{3}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 1 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \sec^6 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×