Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{x + 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 2}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3 - 1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 3}{\sqrt{2x + 3}} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\int\left( \sqrt{2x + 3} - \frac{1}{\sqrt{2x + 3}} \right)dx\]
\[ = \frac{1}{2}\left[ \int \left( 2x + 3 \right)^\frac{1}{2} dx - \int \left( 2x + 3 \right)^{- \frac{1}{2}} dx \right]\]
\[ = \frac{1}{2}\left[ \frac{\left( 2x + 3 \right)^\frac{1}{2} + 1}{2\left( \frac{1}{2} + 1 \right)} - \frac{\left( 2x + 3 \right)^{- \frac{1}{2} + 1}}{2\left( - \frac{1}{2} + 1 \right)} + C \right]\]
\[ = \frac{1}{2}\left[ \frac{1}{3} \left( 2x + 3 \right)^\frac{3}{2} - \left( 2x + 3 \right)^\frac{1}{2} + C \right]\]
\[ = \frac{1}{6} \left( 2x + 3 \right)^\frac{3}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{1}{2} + C\]
APPEARS IN
संबंधित प्रश्न
` = ∫ root (3){ cos^2 x} sin x dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`