Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[ = \int\left( a^2 \tan^2 x + b^2 \cot^2 x +\text{ 2ab tan x }\cot x \right)dx\]
\[ = a^2 \int \tan^2\text{ x dx }+ b^2 \int \cot^2 \text{x dx }+ \text{2ab ∫ dx}\]
\[ = a^2 \int\left( \sec^2 x - 1 \right)dx + b^2 \int\left( {cosec}^2 x - 1 \right)dx + 2ab\ ∫ dx\]
\[ = a^2 \left[ \tan x - x \right] + b^2 \left[ - \cot x - x \right] + \text{2ab x }+ C\]
\[ = a^2 \tan x - b^2 \cot x - \left( a^2 + b^2 - 2ab \right)x + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`