मराठी

∫ ( a Tan X + B Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( a \tan x + b \cot x \right)^2 dx\]
बेरीज

उत्तर

\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[ = \int\left( a^2  \tan^2 x + b^2 \cot^2 x +\text{ 2ab tan x }\cot x \right)dx\]
\[ = a^2 \int \tan^2\text{ x  dx }+ b^2 \int \cot^2 \text{x dx }+ \text{2ab  ∫ dx}\] 
\[ = a^2 \int\left( \sec^2 x - 1 \right)dx + b^2 \int\left( {cosec}^2 x - 1 \right)dx + 2ab\  ∫ dx\]

\[ = a^2 \left[ \tan x - x \right] + b^2 \left[ - \cot x - x \right] + \text{2ab x }+ C\]
\[ = a^2 \tan x - b^2 \cot x - \left( a^2 + b^2 - 2ab \right)x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 40 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \tan^3 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×