मराठी

∫ Tan − 1 ( 2 X 1 − X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[ = 2\int 1_{II} . \tan^{- 1} x_I \text{ dx }\]
\[ = 2 \left[ \tan^{- 1} x\int1 \text{  dx }- \int\left\{ \frac{d}{dx}\left\{ \tan^{- 1} x \right\}\int1 \text{ dx    }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times \text{ x dx } \right]\]
\[ = 2 \tan^{- 1} x . x - \int \frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 43 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫      tan^5    x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int x \cos x\ dx\]

\[\int x \cos^2 x\ dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×