मराठी

∫ E X ( 1 − Sin X 1 − Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

पर्याय

  • \[- e^x \tan\frac{x}{2} + C\]
  • \[- e^x \cot\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \tan\frac{x}{2} + C\]
  • \[- \frac{1}{2} e^x \cot\frac{x}{2} + C\]
MCQ

उत्तर

\[- e^x \cot\frac{x}{2} + C\]
 
 
\[\text{Let }I = \int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{1 - \cos x} - \frac{\sin x}{1 - \cos x} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2 \sin^2 \frac{x}{2}} - \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right)dx\]
\[ \Rightarrow \int e^x \left( \frac{1}{2} {cosec}^2 \frac{x}{2} - \cot \frac{x}{2} \right)dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = - e^x \cot \left( \frac{x}{2} \right) + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 20 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×