Advertisements
Advertisements
प्रश्न
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
बेरीज
उत्तर
\[\int\frac{e^\sqrt{x} \cdot \cos \left( e^\sqrt{x} \right)}{\sqrt{x}}dx\]
\[\text{Let e}^\sqrt{x} = t\]
\[ \Rightarrow e^\sqrt{x} \times \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{e^\sqrt{x}}{\sqrt{x}}dx = 2dt\]
\[Now, \int\frac{e^\sqrt{x} \cdot \cos \left( e^\sqrt{x} \right)}{\sqrt{x}}dx\]
\[ = 2\int\text{cos t dt} \]
\[ = 2 \sin t + C\]
\[ = 2 \sin \left( e^\sqrt{x} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]