मराठी

∫ X 2 Sin − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sin^{- 1} x\ dx\]
बेरीज

उत्तर

\[\int {x^2}_{II} . \sin^{- 1}_I x \text{ dx }\]
\[ = \sin^{- 1}_{} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \sin^{- 1}_{} x \right)\int x^2 dx \right\}dx\]
\[ = \sin^{- 1} x . \frac{x^3}{3} - \int\frac{1}{\sqrt{1 - x^2}} \frac{x^3}{3}dx\]
\[\text{  Let 1} - x^2 = t\]
\[ \Rightarrow x^2 = 1 - t\]
\[ \Rightarrow -\text{  2x dx } = dt\]
\[ \Rightarrow\text{  x dx } = - \frac{dt}{2}\]


\[ \therefore \int {x^2}_{} . \sin^{- 1}_{} \text{ x dx } = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{\sqrt{1 - x^2}}dx\]


\[ = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( 1 - t \right)}{\sqrt{t}}dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6}\int t^{- \frac{1}{2}} dt - \frac{1}{6}\int t^\frac{1}{2} dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6} \times 2\sqrt{t} - \frac{1}{6} \times \frac{2}{3} t^\frac{3}{2} + C\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{\sqrt{1 - x^2}}{3} - \frac{1}{9} \left( 1 - x^2 \right)^\frac{3}{2} + C \left( \because 1 - x^2 = t \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 38 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \cos x\ dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×