Advertisements
Advertisements
प्रश्न
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let }\int\frac{\left( x + 2 \right)}{\left( x + 1 \right)^3}dx\]
\[\text{ Putting x }+ 1 = t\]
\[ \Rightarrow x = t - 1\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\left( \frac{t - 1 + 2}{t^3} \right)dt\]
\[ = \int\left( \frac{1}{t^2} + \frac{1}{t^3} \right)dt\]
\[ = \int\left( t^{- 2} + t^{- 3} \right)dt\]
\[ = \left[ \frac{t^{- 2 + 1}}{- 2 + 1} + \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C \]
\[ = - \frac{1}{t} - \frac{2}{t^2} + C\]
\[ = - \frac{1}{x + 1} - \frac{1}{2 \left( x + 1 \right)^2} + C .......................\left( \because t = x + 1 \right)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`