मराठी

∫ X 2 ( X − 1 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx }\]
\[\text{Putting  x }+ 2 = t^2 \]
\[x = t^2 - 2\]
\[\text{ Diff  both  sides }\]
\[dx = 2t \text{ dt }\]
\[I = \int \frac{\left( t^2 - 2 \right)^2}{\left( t^2 - 2 - 1 \right)t}2 \text{   t dt }\]
\[ = 2\int \frac{\left( t^2 - 2 \right)^2 dt}{t^2 - 3}\]
\[ = 2\int \frac{\left( t^4 - 4 t^2 + 4 \right)}{t^2 - 3}dt\]
\[\text{Dividing numerator by denominator, we get}\]


\[ \therefore I = 2\int\left( t^2 - 1 + \frac{1}{t^2 - 3} \right)dt \]
\[ = 2\int t^2 dt - 2\int dt + 2\int\frac{dt}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2\left[ \frac{t^3}{3} \right] - 2t + 2 \times \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( \sqrt{x + 2} \right)^3 - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log} \left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]
\[ = \frac{2}{3} \left( x + 2 \right)^\frac{3}{2} - 2\sqrt{x + 2} + \frac{1}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 4 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×