मराठी

∫ Sin − 1 ( 2 X 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
बेरीज

उत्तर

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\text{ Let x }= \tan \theta\]

\[dx = \text{ sec}^2  \text{  θ }\text{ dθ   }\]

\[ \therefore \int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)dx = \int \sin^{- 1} \left( \frac{2 \tan \theta}{1 + \tan^2 \theta} \right) . \sec^2  \text{ θ    dθ }\]

\[ = \int \sin^{- 1} \left( \sin 2\theta \right) . \sec^2 \text{ θ  dθ }\]

\[ = \int \left( 2\theta \right) \sec^2  \text{ θ  dθ }\]

\[ = 2\int \theta_I \sec^2_{II} \text{ θ  dθ }\]

\[ = 2\left[ \theta\int \sec^2 \text{ θ  dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int s {ec}^2 \text{ θ  dθ } \right\}d\theta \right]\]

\[ = 2\left[ \theta . \tan \theta - \int1 . \tan \text{ θ  dθ }\right]\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| \sec \theta \right| \right] + C\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| 1 + \tan^2 \theta \right|^\frac{1}{2} \right] + C\]

\[ = 2\left[ \left( \tan^{- 1} x \right) \times x - \text{ log }\left( 1 + x^2 \right)^\frac{1}{2} \right] + C\]

\[ = 2 x \tan^{- 1} x - 2 \times \frac{1}{2}\text{ log}\left| 1 + x^2 \right| + C\]

\[ = 2 x \tan^{- 1} x - \text{ log }\left| 1 + x^2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 36 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x e^x \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int {cosec}^4 2x\ dx\]


\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×