हिंदी

∫ Sin − 1 ( 2 X 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
योग

उत्तर

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\text{ Let x }= \tan \theta\]

\[dx = \text{ sec}^2  \text{  θ }\text{ dθ   }\]

\[ \therefore \int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)dx = \int \sin^{- 1} \left( \frac{2 \tan \theta}{1 + \tan^2 \theta} \right) . \sec^2  \text{ θ    dθ }\]

\[ = \int \sin^{- 1} \left( \sin 2\theta \right) . \sec^2 \text{ θ  dθ }\]

\[ = \int \left( 2\theta \right) \sec^2  \text{ θ  dθ }\]

\[ = 2\int \theta_I \sec^2_{II} \text{ θ  dθ }\]

\[ = 2\left[ \theta\int \sec^2 \text{ θ  dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int s {ec}^2 \text{ θ  dθ } \right\}d\theta \right]\]

\[ = 2\left[ \theta . \tan \theta - \int1 . \tan \text{ θ  dθ }\right]\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| \sec \theta \right| \right] + C\]

\[ = 2\left[ \theta \tan \theta - \text{ log }\left| 1 + \tan^2 \theta \right|^\frac{1}{2} \right] + C\]

\[ = 2\left[ \left( \tan^{- 1} x \right) \times x - \text{ log }\left( 1 + x^2 \right)^\frac{1}{2} \right] + C\]

\[ = 2 x \tan^{- 1} x - 2 \times \frac{1}{2}\text{ log}\left| 1 + x^2 \right| + C\]

\[ = 2 x \tan^{- 1} x - \text{ log }\left| 1 + x^2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 36 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×