हिंदी

∫ Tan − 1 ( 3 X − X 3 1 − 3 X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
योग

उत्तर

\[\text{ Let I } = \int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) \text{ dx }\]
\[ = \int3 \tan^{- 1} \left( x \right) \text{ dx }\]
\[ = 3\int\left[ \tan^{- 1} \left( x \right) \times 1 \right] \text{ dx }\]
\[ = 3 \left[ \tan^{- 1} x \times x - \int\frac{1}{1 + x^2} \times\text{  x dx } \right]\]
\[ = 3x \tan^{- 1} x - 3\int\frac{x}{1 + x^2} dx\]
\[\text{ let 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[\text{ Then,} \]
\[I = 3x \tan^{- 1} x - \frac{3}{2}\int\frac{dt}{t}\]
\[ = 3x \tan^{- 1} x - \frac{3}{2} \text{ log } \left| t \right| + C\]
\[ = 3x \tan^{- 1} x - \frac{3}{2} \text{ log} \left| 1 + x^2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 37 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫      tan^5    x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x e^x \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×