हिंदी

∫ 1 Cos X ( 5 − 4 Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
योग

उत्तर

We have,
\[I = \int\frac{dx}{\cos x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\cos^2 x \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin^2 x \right) \left( 5 - 4 \sin x \right)}\]
\[ = \int\frac{\cos x dx}{\left( 1 - \sin x \right) \left( 1 + \sin x \right) \left( 5 - 4 \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[\text{Let }\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A}{1 - t} + \frac{B}{1 + t} + \frac{C}{5 - 4t}\]
\[ \Rightarrow \frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)} = \frac{A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)}{\left( 1 - t \right) \left( 1 + t \right) \left( 5 - 4t \right)}\]
\[ \Rightarrow 1 = A\left( 1 + t \right) \left( 5 - 4t \right) + B\left( 1 - t \right) \left( 5 - 4t \right) + C\left( 1 - t \right) \left( 1 + t \right)\]
\[\text{Putting 1 + t = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = B\left( 2 \right) \left( 5 + 4 \right)\]
\[B = \frac{1}{18}\]
\[\text{Putting 1 - t = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 2 \right) \left( 5 - 4 \right) + B \times 0 + C \times 0\]
\[A = \frac{1}{2}\]
\[\text{Putting 5 - 4t = 0}\]
\[ \Rightarrow 4t = 5\]
\[ \Rightarrow t = \frac{5}{4}\]
\[1 = C \left( 1 - \frac{5}{4} \right) \left( 1 + \frac{5}{4} \right)\]
\[ \Rightarrow 1 = C \left( - \frac{1}{4} \right) \left( \frac{9}{4} \right)\]
\[ \Rightarrow C = - \frac{16}{9}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{1 - t} + \frac{1}{18}\int\frac{dt}{1 + t} - \frac{16}{9}\int\frac{dt}{5 - 4t}\]
\[ = \frac{1}{2} \frac{\log \left| 1 - t \right|}{- 1} + \frac{1}{18} \log \left| 1 + t \right| - \frac{16}{9} \times \frac{\log \left| 5 - 4t \right|}{- 4} + C\]
\[ = \frac{1}{18} \log \left| 1 + t \right| - \frac{1}{2} \log \left| 1 - t \right| + \frac{4}{9}\log \left| 5 - 4t \right| + C\]
\[ = \frac{1}{18} \log \left| 1 + \sin x \right| - \frac{1}{2} \log \left| 1 - \sin x \right| + \frac{4}{9} \log \left| 5 - 4 \sin x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 59 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \sin^5 x \cos x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int x \sec^2 2x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×