हिंदी

Evaluate the Following Integral: ∫ X 2 ( X 2 + a 2 ) ( X 2 + B 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
We express
\[\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}\]
\[ \Rightarrow x^2 = A\left( x^2 + b^2 \right) + B\left( x^2 + a^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[1 = A + B\text{ and }0 = b^2 A + a^2 B\]
\[or A = - \frac{a^2}{b^2 - a^2}\text{ and }B = \frac{b^2}{b^2 - a^2}\]
\[ \therefore I = \int\left( \frac{- \frac{a^2}{b^2 - a^2}}{x^2 + a^2} + \frac{\frac{b^2}{b^2 - a^2}}{x^2 + b^2} \right)dx\]
\[ = - \frac{a^2}{b^2 - a^2}\int\frac{1}{x^2 + a^2}dx + \frac{b^2}{b^2 - a^2}\int\frac{1}{x^2 + b^2} dx\]
\[ = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]
\[\text{Hence, }\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 58 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×