Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)}dx\]
\[\text{Putting}\ \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[ \therefore I = \int\frac{1}{2 + 3t}dt\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3t \right| + C\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3 \sin^{- 1} x \right| + C \left[ \because t = \sin^{- 1} x \right]\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
Evaluate the following integrals:
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]