हिंदी

∫ 1 √ 1 − X 2 ( 2 + 3 Sin − 1 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
योग

उत्तर

\[\text{Let I} = \int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)}dx\]
\[\text{Putting}\ \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[ \therefore I = \int\frac{1}{2 + 3t}dt\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3t \right| + C\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3 \sin^{- 1} x \right| + C \left[ \because t = \sin^{- 1} x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 40 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  sec^6   x  tan    x   dx `

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^4 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×