हिंदी

∫ X 2 Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \tan^{- 1} x\ dx\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int x^2 \tan^{- 1} x \text{ dx }\]
\[\text{Considering} \tan^{- 1}  \text{  x   as first function and  x}^2 \text{as second function}\]
\[I = \tan^{- 1} x\frac{x^3}{3} - \int\left( \frac{1}{1 + x^2} \times \frac{x^3}{3} \right)dx\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\frac{x^3 dx}{1 + x^2}\]
\[ = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{3}\int\left( \frac{x^2 x}{1 + x^2} \right)dx\]
\[\text{ Putting 1 + x}^2 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{ 2x dx = dt}\]
\[ \Rightarrow x\text{  dx }= \frac{dt}{2}\]
\[ \therefore I = \tan^{- 1} x\frac{x^3}{3} - \frac{1}{6}\int\left( \frac{t - 1}{t} \right)dt\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{dt}{t}\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}t + \frac{1}{6}\text{ log }\left| t \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{1}{6}\left( 1 + x^2 \right) + \frac{1}{6}\text{ log }\left| 1 + x^2 \right| + C\]
\[ = \frac{x^3}{3} \tan^{- 1} x - \frac{x^2}{6} + \frac{1}{6}\text{ log} \left| x^2 + 1 \right| + C'\text{  Where C' = C }- \frac{1}{6}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 108 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^3 \sin x^4 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×