Advertisements
Advertisements
प्रश्न
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
योग
उत्तर
\[\text{ Let I }= \int e^x \left[ \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \right]dx\]
\[ = \int e^x \left[ \sin^{- 1} x + \frac{1}{\sqrt{1 - x^2}} \right]dx\]
\[\text{ Here}
, f(x) = \sin^{- 1} x\]
\[ \Rightarrow f'(x) = \frac{1}{\sqrt{1 - x^2}}\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \sin^{- 1} x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[\left( e^x \sin^{- 1} x + e^x \times \frac{1}{\sqrt{1 - x^2}} \right)dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \sin^{- 1} x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]