Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
योग
उत्तर
\[\text{ Let I }= \int\frac{e^x}{x}\left[ x \left( \log x \right)^2 + 2\log x \right]dx\]
\[ = \int e^x \left[ \left( \log x \right)^2 + \frac{2\log x}{x} \right]dx\]
\[Here, f(x) = \left( \log x \right)^2 \]
\[ \Rightarrow f'(x) = \frac{2\log x}{x}\]
\[\text{ put e}^x f(x) = t\]
\[ \Rightarrow e^x \left( \log x \right)^2 = t\]
\[\text{ Diff both sides w . r . t x }\]
\[\left[ e^x \left( \log x \right)^2 + e^x \frac{2\log x}{x} \right]dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \left( \log x \right)^2 + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \log_{10} x\ dx\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]