हिंदी

∫ X 2 ( X − 1 ) ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
योग

उत्तर

We have,

\[I = \int\frac{x^2 dx}{\left( x - 1 \right) \left( x + 1 \right)^2}\]

\[\text{Let }\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x + 1 \right) \left( x - 1 \right) + C \left( x - 1 \right)}{\left( x + 1 \right)^2 \left( x - 1 \right)}\]

\[ \Rightarrow x^2 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 - 1 \right) + C \left( x - 1 \right)\]

\[ \Rightarrow x^2 = \left( A + B \right) x^2 + x \left( 2A + C \right) + \left( A - B - C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 1 ...................(1)\]

\[2A + C = 0 ....................(2)\]

\[A - B - C = 0 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{4}, B = \frac{3}{4}\text{ and }C = - \frac{1}{2}\]

\[ \therefore \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{1}{4 \left( x - 1 \right)} + \frac{3}{4 \left( x + 1 \right)} - \frac{1}{2 \left( x + 1 \right)^2}\]

\[ \Rightarrow I = \frac{1}{4}\int\frac{dx}{x - 1} + \frac{3}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = \frac{1}{4} \log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| - \frac{1}{2} \times \frac{- 1}{x + 1} + C\]

\[ = \frac{1}{4}\log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| + \frac{1}{2 \left( x + 1 \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 31 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×