हिंदी

∫ 3 X + 1 √ 5 − 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]

योग

उत्तर

 

  ` \text{ Let I }=∫  {x   dx}/{\sqrt{8 + x - x^2}} `

\[\text{ Consider }, x = A\frac{d}{dx} \left( 8 + x - x^2 \right) + B\]

\[x = A \left( 1 - 2x \right) + B\]

\[x = \left( - 2A \right) x + A + B\]

\[\text{ Equating Coefficients of like terms }\]

\[ - 2A = 1\]

\[ \Rightarrow A = - \frac{1}{2}\]

\[\text{ And }\]

\[A + B = 0\]

\[ \Rightarrow - \frac{1}{2} + B = 0\]

\[ \Rightarrow B = \frac{1}{2}\]

\[ \therefore x = - \frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}\]

\[\text{ Then }, \]

\[I = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + x - x^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 - \left( x^2 - x + \frac{1}{4} - \frac{1}{4} \right)}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{8 + \frac{1}{4} - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2}\int\frac{\left( 1 - 2x \right) dx}{\sqrt{8 + x - x^2}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[\text{ let 8 + x - x^2 = t }\]

\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]

\[ \therefore I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{33}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{33}}{2}} \right) + C\]

\[ = - \sqrt{t} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

\[ = - \sqrt{8 + x - x^2} + \frac{1}{2} \sin^{- 1} \left( \frac{2x - 1}{\sqrt{33}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 6 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×