हिंदी

∫ √ 1 − Sin X 1 + Cos X E − X / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]
योग

उत्तर

Let I=\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} dx\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\frac{\sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{2 \cos^2 \frac{x}{2}} e^\frac{- x}{2} dx\]

\[ = \int\left( \frac{\sin\frac{x}{2} - \cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\left[ \frac{1}{2}\sec\frac{x}{2}\tan\frac{x}{2} - \frac{1}{2}\sec\left( \frac{x}{2} \right) \right] e^\frac{- x}{2} dx\]

\[ = \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx\]

\[\text{ let e}^\frac{- x}{2} \text{ sec }\left( \frac{x}{2} \right) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^\frac{- x}{2} \frac{\sec\left( \frac{x}{2} \right)\tan\left( \frac{\mathit{x}}{2} \right)}{2} + \sec\left( \frac{x}{2} \right) \times e^\frac{- x}{2} \times \frac{- 1}{2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{e}{2}^\frac{- x}{2} \left[ \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right]dx = dt\]

\[ \therefore \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx = \int dt\]

\[ \Rightarrow I = \int t + C\]

\[ = e^\frac{- x}{2} \sec\left( \frac{x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 14 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×