हिंदी

If F' (X) = X − 1 X 2 1 2 , - Mathematics

Advertisements
Advertisements

प्रश्न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 

योग

उत्तर

\[f'\left( x \right) = x - \frac{1}{x^2}\]
\[ f'\left( x \right) = x - x^{- 2} \]
\[\int f'\left( x \right)dx = \int\left( x - x^{- 2} \right)dx\]
\[ f\left( x \right) = \frac{x^2}{2} - \frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^2}{2} + \frac{1}{x} + C\]
\[f\left( 1 \right) = \frac{1}{2} \left( Given \right)\]
\[ \Rightarrow \frac{1^2}{2} + \frac{1}{1} + C = \frac{1}{2}\]
\[ \Rightarrow C = - 1\]
\[ \therefore f\left( x \right) = \frac{x^2}{2} + \frac{1}{x} - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 45 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x e^{2x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\cos\sqrt{x}\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×