Advertisements
Advertisements
प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
उत्तर
\[f'\left( x \right) = x - \frac{1}{x^2}\]
\[ f'\left( x \right) = x - x^{- 2} \]
\[\int f'\left( x \right)dx = \int\left( x - x^{- 2} \right)dx\]
\[ f\left( x \right) = \frac{x^2}{2} - \frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^2}{2} + \frac{1}{x} + C\]
\[f\left( 1 \right) = \frac{1}{2} \left( Given \right)\]
\[ \Rightarrow \frac{1^2}{2} + \frac{1}{1} + C = \frac{1}{2}\]
\[ \Rightarrow C = - 1\]
\[ \therefore f\left( x \right) = \frac{x^2}{2} + \frac{1}{x} - 1\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
Integrate the following integrals:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]