हिंदी

∫ ( 1 Log X − 1 ( Log X ) 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
योग

उत्तर

\[\text{  Let I  }= \int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right)dx\]

\[\text{ Put  log x }= t\]

\[ \Rightarrow x = e^t \]

\[ \Rightarrow dx = e^t dt\]

\[ \therefore I = \int e^t \left( \frac{1}{t} - \frac{1}{t^2} \right)dt\]

\[\text{ Here}, f(t) = \frac{1}{t}\]

\[ \Rightarrow f'(t) = \frac{- 1}{t^2}\]

\[\text{ let e} ^t \times \frac{1}{t} = p\]

\[\text{ Diff  both  sides  w . r . t  t}\]

\[\left( e^t \times \frac{1}{t} + e^t \times \frac{- 1}{t^2} \right)dt = dp\]

\[ \therefore I = \int dp\]

\[ = p + C\]

\[ = \frac{e^t}{t} + C\]

\[ = \frac{x}{\log x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.26 | Q 20 | पृष्ठ १४३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×