Advertisements
Advertisements
प्रश्न
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
योग
उत्तर
\[\text{ Let I }= \int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right)dx\]
\[\text{ Put log x }= t\]
\[ \Rightarrow x = e^t \]
\[ \Rightarrow dx = e^t dt\]
\[ \therefore I = \int e^t \left( \frac{1}{t} - \frac{1}{t^2} \right)dt\]
\[\text{ Here}, f(t) = \frac{1}{t}\]
\[ \Rightarrow f'(t) = \frac{- 1}{t^2}\]
\[\text{ let e} ^t \times \frac{1}{t} = p\]
\[\text{ Diff both sides w . r . t t}\]
\[\left( e^t \times \frac{1}{t} + e^t \times \frac{- 1}{t^2} \right)dt = dp\]
\[ \therefore I = \int dp\]
\[ = p + C\]
\[ = \frac{e^t}{t} + C\]
\[ = \frac{x}{\log x} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]