Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
योग
उत्तर
\[\text{ Let I } = \int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right)dx\]
\[ = \int e^x \left[ \cot x - {cosec}^2 x \right]dx\]
\[\text{ Here}, f(x) = \cot x\]
\[ \Rightarrow f'(x) = - {cosec}^2 x\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \cot x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \left( \cot x - {cosec}^2 x \right)dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \cot x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]