Advertisements
Advertisements
Question
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
Sum
Solution
\[\text{ Let I } = \int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right)dx\]
\[ = \int e^x \left[ \cot x - {cosec}^2 x \right]dx\]
\[\text{ Here}, f(x) = \cot x\]
\[ \Rightarrow f'(x) = - {cosec}^2 x\]
\[\text{ Put e}^x f(x) = t\]
\[ \Rightarrow e^x \cot x = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \left( \cot x - {cosec}^2 x \right)dx = dt\]
\[ \therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \cot x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int \log_{10} x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]