Advertisements
Advertisements
Question
Solution
\[\text{ Let I = } \int\left( \frac{2 \tan x + 3}{3 \tan x + 4} \right)dx\]
\[ = \int\left( \frac{\frac{2 \sin x}{\cos x} + 3}{\frac{3 \sin x}{\cos x} + 4} \right)dx\]
\[ = \int\left( \frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Let }\left( 2 \sin x + 3 \cos x \right) = A \left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . . (1) \]
\[ \Rightarrow 2 \sin x + 3 \cos x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{Equating the coefficients of like terms}\]
\[3A - 4B = 2 . . . \left( 2 \right)\]
\[4A + 3B = 3 . . . \left( 3 \right)\]
Multiplying equation (2) by 3 and equation (3) by 4 ,then by adding them we get
9A - 12B = 6
16A + 12B = 12
_________________________
25 A = 18
` ⇒ A = 18/25 `
\[\text{ Putting value of A in eq } \left( 2 \right) \text{ we get,} \]
\[ \Rightarrow B = \frac{1}{25}\]
\[\text{Thus, by substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left\{ \frac{\frac{18}{25} \left( 3 \sin x + 4 \cos x \right) + \frac{1}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right\}dx\]
\[ = \frac{18}{25}\int dx + \frac{1}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 3 sin x + 4 cos x = t }\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{18}{25}x + \frac{1}{25}\int\frac{1}{t}dt\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| 3 \sin x + 4 \cos\ x \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` = ∫ root (3){ cos^2 x} sin x dx `
Evaluate the following integrals:
Evaluate the following integral:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]