English

∫ 2 Tan X + 3 3 Tan X + 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
Sum

Solution

\[\text{ Let I = } \int\left( \frac{2 \tan x + 3}{3 \tan x + 4} \right)dx\]
\[ = \int\left( \frac{\frac{2 \sin x}{\cos x} + 3}{\frac{3 \sin x}{\cos x} + 4} \right)dx\]
\[ = \int\left( \frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Let }\left( 2 \sin x + 3 \cos x \right) = A \left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . . (1) \]
\[ \Rightarrow 2 \sin x + 3 \cos x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{Equating the coefficients of like terms}\]
\[3A - 4B = 2 . . . \left( 2 \right)\]
\[4A + 3B = 3 . . . \left( 3 \right)\]

Multiplying equation (2) by 3 and equation (3) by 4 ,then by adding them we get

  9A     -     12B   =   6 

16A   +    12B  =     12
_________________________

            25 A   = 18

 

` ⇒ A = 18/25 `
\[\text{ Putting  value of  A in  eq } \left( 2 \right) \text{   we get,} \]
\[ \Rightarrow B = \frac{1}{25}\]

\[\text{Thus, by substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left\{ \frac{\frac{18}{25} \left( 3 \sin x + 4 \cos x \right) + \frac{1}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right\}dx\]
\[ = \frac{18}{25}\int dx + \frac{1}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 3 sin x + 4 cos x = t }\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{18}{25}x + \frac{1}{25}\int\frac{1}{t}dt\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| 3 \sin x + 4 \cos\ x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 8 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int {cosec}^3 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×