English

∫ 3 X + 5 √ 7 X + 9 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
Sum

Solution

\[\text{Let I }= \int\left( \frac{3x + 5}{\sqrt{7x + 9}} \right)dx\]
\[Putting\ 7x + 9 = t\]
\[ \Rightarrow x = \frac{t - 9}{7}\]

\[\text{and}\ 7dx = dt\]
\[ \Rightarrow dx = \frac{dt}{7}\]

\[\therefore I = \int\left( \frac{3\left( \frac{t - 9}{7} \right) + 5}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3}{7}\frac{t}{\sqrt{t}} - \frac{27}{7\sqrt{t}} + \frac{5}{\sqrt{t}} \right)\frac{dt}{7}\]


` = 3/(7× 7) ∫ t^{1/2} dt - 27/{7× 7 }   ∫  t ^{-1/2} dt + 5/7 ∫   t ^{-1/2}dt `
\[ = \frac{3}{7 \times 7}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{27}{7 \times 7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{5}{7}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]


\[ = \frac{2}{7 \times 7} t^\frac{3}{2} - \frac{27}{7 \times 7} \times \text{2 }   t^\frac{1}{2} + \frac{10\sqrt{t}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} - \frac{54}{7 \times 7} \left( 7x + 9 \right)^\frac{1}{2} + \frac{10}{7}\sqrt{7x + 9} + C \left[ \because t = 7x + 9 \right]\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \left( 10 - \frac{54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7} \left( 7x + 9 \right)^\frac{3}{2} + \left( \frac{70 - 54}{7} \right) \frac{\sqrt{7x + 9}}{7} + C\]
\[ = \frac{2}{7 \times 7} \left( 7x + 9 \right)^\frac{3}{2} + \frac{16}{7 \times 7}\sqrt{7x + 9} + C\]
\[ = \frac{2}{7 \times 7}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left[ 7x + 9 + 8 \right] \right] + C\]
\[ = \frac{2}{49}\left[ \left( 7x + 9 \right)^\frac{1}{2} \left( 7x + 17 \right) \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.05 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.05 | Q 6 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×