Advertisements
Advertisements
Question
Solution
\[\int\frac{x}{\sqrt{x + 4}}dx\]
\[ = \int\left( \frac{x + 4 - 4}{\sqrt{x + 4}} \right)dx\]
\[ = \int\left( \sqrt{x + 4} - \frac{4}{\sqrt{x + 4}} \right)dx\]
\[ = \int \left( x + 4 \right)^\frac{1}{2} dx - 4\int \left( x + 4 \right)^{- \frac{1}{2}} dx\]
\[ = \frac{\left( x + 4 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - 4\frac{\left[ x + 4 \right]^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} \left( x + 4 \right)^\frac{3}{2} - 8 \left( x + 4 \right)^\frac{1}{2} + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2}{3}\left( x + 4 \right) - 8 \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x + 8 - 24}{3} \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x - 16}{3} \right] + C\]
\[ = \frac{2}{3}\left( x - 8 \right)\sqrt{x + 4} + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`