Advertisements
Advertisements
Question
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Solution
`(x^3-3x+1)/sqrt(1-x^2)=−(x^2+3x−1+1−1)/sqrt(1−x2)`
`=−(1-x^2+3x−2)/sqrt(1−x2)`
`=(−1−x^2)/sqrt(1−x^2)−(3x−2)/sqrt(1−x^2)`
`=−sqrt(1−x2)−(3x−2)/sqrt(1−x2)`
`=>int(x^3-3x+1)/sqrt(1-x^2)dx`
`=int(−sqrt(1−x2)−(3x−2)/sqrt(1−x2))dx`
`=−intsqrt(1−x2)dx−int(3x−2)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(1−x2)dx-2int(1)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(t)dt-2int(1)/sqrt(1−x2)dx (Here, t=1−x2.)`
`=−[1/2xsqrt(1−x2)+1/2sin^(−1) x]+3/2xx2sqrtt−2cos^(−1) x+C `
`= −1/2xsqrt(1−x2)−1/2sin^(−1) x+3sqrt(1−x2)−2cos^(−1) x+C`
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals:
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)