English

Integrate the following w.r.t. x (x3-3x+1)/sqrt(1-x2) - Mathematics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`

Solution

`(x^3-3x+1)/sqrt(1-x^2)=−(x^2+3x−1+1−1)/sqrt(1−x2)`

`=−(1-x^2+3x−2)/sqrt(1−x2)`

`=(−1−x^2)/sqrt(1−x^2)−(3x−2)/sqrt(1−x^2)`

 

`=−sqrt(1−x2)−(3x−2)/sqrt(1−x2)`

`=>int(x^3-3x+1)/sqrt(1-x^2)dx`

`=int(−sqrt(1−x2)−(3x−2)/sqrt(1−x2))dx`

`=−intsqrt(1−x2)dx−int(3x−2)/sqrt(1−x2)dx`

`=−intsqrt(1−x2)dx−int(3x)/sqrt(1−x2)dx-2int(1)/sqrt(1−x2)dx`

`=−intsqrt(1−x2)dx−int(3x)/sqrt(t)dt-2int(1)/sqrt(1−x2)dx    (Here, t=1−x2.)`

 

`=−[1/2xsqrt(1−x2)+1/2sin^(−1) x]+3/2xx2sqrtt−2cos^(−1) x+C `

`= −1/2xsqrt(1−x2)−1/2sin^(−1) x+3sqrt(1−x2)−2cos^(−1) x+C`

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×