Advertisements
Advertisements
Question
Solution
Putting x + 4 = t
Then, x = t – 4
Difference both sides
dx = dt
Now integral becomes,
\[I = \int\left( \frac{t - 4 - 1}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{t}{\sqrt{t}} - \frac{5}{\sqrt{t}} \right)dt\]
\[ = \int\left( t^\frac{1}{2} - 5 t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} - 5\frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} t^\frac{3}{2} - 10\sqrt{t} + C\]
\[ = \frac{2}{3} \left( x + 4 \right)^\frac{3}{2} - 10 \left( x + 4 \right)^\frac{1}{2} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`