Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Solution
\[\int\frac{dx}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2}\]
\[Let, \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} dx = dt\]
\[Now, \int\frac{dx}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2}\]
\[ = \int\frac{dt}{t^2}\]
\[ = \int t^{- 2} dt\]
\[ = \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{- 1}{t} + C\]
\[ = - \frac{1}{\sin^{- 1} x} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`