English

Evaluate the following: d∫3x-1x2+9dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`

Sum

Solution

Let I = `int (3x - 1)/sqrt(x^2 + 9) "d"x`

= `int (3x)/sqrt(x^2 + 9) "d"x - int 1/sqrt(x^2 + 9) "d"x`

I = I1 – I2

Now I1 = `int (3x)/sqrt(x^2 + 9) "d"x`

Put x2 + 9 = t

⇒ 2x dx = dt

x dx = – dt

∴ I1 = `3/2 int "dt"/sqrt("t")`

= `3/2 * 2sqrt("t") + "C"_1`

= `3sqrt(x^2 + 9) + "C"_1`

I2 = `int 1/sqrt(x^2 + 9) "d"x`

= `int 1/sqrt(x^2 + (3)^2) "d"x`

= `log|x + sqrt(x^2 + (3)^2)| + "C"_2`  ....`[because int 1/sqrt(x^2 + "a"^2) "d"x = log|x + sqrt(x^2 + "a"^2)| + "C"]`

= `log|x + sqrt(x^2 + 9)| + "C"_2`

∴ I = I1 – I2 

= `3sqrt(x^2 + 9) + "C"_1 - log|x + sqrt(x^2 + 9)| - "C"_2`

= `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + ("C"_1 - "C"_2)`

Hence, I = `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 16 | Page 164

RELATED QUESTIONS

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×