English

∫ Cos X ( 1 − Sin X ) ( 2 − Sin X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{\cos x dx}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos\ x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 2 - t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A}{t - 1} + \frac{B}{t - 2}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A\left( t - 2 \right) + B\left( t - 1 \right)}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[ \Rightarrow 1 = A\left( t - 2 \right) + B\left( t - 1 \right)\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A\left( 1 - 2 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }t - 2 = 0\]
\[ \Rightarrow t = 2\]
\[ \therefore 1 = A \times 0 + B\left( 2 - 1 \right)\]
\[ \Rightarrow B = 1\]
\[ \therefore I = \int\frac{- dt}{t - 1} + \int\frac{dt}{t - 2}\]
\[ = - \log \left| t - 1 \right| + \log \left| t - 2 \right| + C\]
\[ = \log\left| \frac{t - 2}{t - 1} \right| + C\]
\[ = \log \left| \frac{\sin x - 2}{\sin x - 1} \right| + C\]
\[ = \log \left| \frac{2 - \sin x}{1 - \sin x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 51 | Page 177

RELATED QUESTIONS

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×