Advertisements
Advertisements
Question
Solution
We have,
\[I = \int \frac{\cos x dx}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)}\]
\[\text{Putting }\sin x = t\]
\[ \Rightarrow \cos\ x\ dx = dt\]
\[ \therefore I = \int\frac{dt}{\left( 1 - t \right) \left( 2 - t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A}{t - 1} + \frac{B}{t - 2}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t - 2 \right)} = \frac{A\left( t - 2 \right) + B\left( t - 1 \right)}{\left( t - 1 \right) \left( t - 2 \right)}\]
\[ \Rightarrow 1 = A\left( t - 2 \right) + B\left( t - 1 \right)\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A\left( 1 - 2 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }t - 2 = 0\]
\[ \Rightarrow t = 2\]
\[ \therefore 1 = A \times 0 + B\left( 2 - 1 \right)\]
\[ \Rightarrow B = 1\]
\[ \therefore I = \int\frac{- dt}{t - 1} + \int\frac{dt}{t - 2}\]
\[ = - \log \left| t - 1 \right| + \log \left| t - 2 \right| + C\]
\[ = \log\left| \frac{t - 2}{t - 1} \right| + C\]
\[ = \log \left| \frac{\sin x - 2}{\sin x - 1} \right| + C\]
\[ = \log \left| \frac{2 - \sin x}{1 - \sin x} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`