English

Evaluate the Following Integral ∫ X 2 + X + 1 ( X 2 + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

We express

\[\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow x^2 + x + 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]

\[\text{Equating the coefficients of x^2 , x and constants, we get}\]

\[1 = A + B and 1 = 2B + C and 1 = A + 2C\]

\[or A = \frac{3}{5} and B = \frac{2}{5} and C = \frac{1}{5} \]

\[ \therefore I = \int\left( \frac{\frac{3}{5}}{x + 2} + \frac{\frac{2}{5}x + \frac{1}{5}}{x^2 + 1} \right)dx\]

\[ = \frac{3}{5}\int\frac{1}{x + 2}dx + \frac{2}{5}\int\frac{x}{x^2 + 1} dx + \frac{1}{5}\int\frac{1}{x^2 + 1} dx\]

\[ = \frac{3}{5} I_1 + \frac{2}{5} I_2 + \frac{1}{5} I_3 ............(1)\]

\[\text{Now, }I_1 = \int\frac{1}{x + 2}dx\]

Let x + 2 = u

On differentiating both sides, we get

\[ dx = du\]

\[ \therefore I_1 = \int\frac{1}{u}du\]

\[ = \log\left| u \right| + c_1 \]

\[ = \log\left| x + 2 \right| + c_1 ............(2)\]

\[\text{And, }I_2 = \int\frac{x}{x^2 + 1} dx\]

\[\text{Let }\left( x^2 + 1 \right) = u\]

On differentiating both sides, we get

\[ 2x\ dx = du\]

\[ \therefore I_2 = \frac{1}{2}\int\frac{1}{u}du\]

\[ = \frac{1}{2}\log\left| u \right| + c_2 \]

\[ = \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 ............(3)\]

\[\text{And, }I_3 = \int\frac{1}{x^2 + 1} dx\]

\[ = \tan^{- 1} x + c_3 ..............(4)\]

From (1), (2), (3) and (4), we get

\[ \therefore I = \frac{3}{5}\left( \log\left| x + 2 \right| + c_1 \right) + \frac{2}{5}\left( \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 \right) + \frac{1}{5}\left( \tan^{- 1} x + c_3 \right)\]

\[ = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

\[\text{Hence, }\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 14 | Page 176

RELATED QUESTIONS

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×