Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int \frac{1}{5 - 4 \cos x}dx\]
\[\text{ Putting cos x} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \]
\[ \Rightarrow I = \int \frac{1}{5 - 4 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 4 + 4 \tan^2 \frac{x}{2}}dx\]
\[ = \int \frac{\text{ sec}^2 \left( \frac{x}{2} \right)}{9 \tan^2 \frac{x}{2} + 1}dx\]
\[\text{ Let tan }\left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2\int\frac{dt}{9 t^2 + 1}\]
\[ = \frac{2}{9}\int\frac{dt}{t^2 + \frac{1}{9}}\]
\[ = \frac{2}{9}\int \frac{dt}{t^2 + \left( \frac{1}{3} \right)^2}\]
\[ = \frac{2}{9} \times 3 \tan^{- 1} \left( \frac{t}{\frac{1}{3}} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3t \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( 3 \tan \frac{x}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`