English

Evaluate the following: d∫12dx(x-1)(2-x) - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

Sum

Solution

Let I = `int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`

= `int_1^2 ("d"x)/sqrt(2x - x^2 - 2 + x)`

= `int_1^2 ("d"x)/sqrt(-x^2 + 3x - 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 2)`

= `int_1^2 ("d"x)/sqrt(-(x^2 - 3x + 9/4 - 9/4 + 2))`  .....[Making perfect square]

= `int_1^2 ("d"x)/sqrt(-[(x - 3/2)^2 - 1/4])`

= `int_1^2 ("dx)/sqrt(1/4 - (x - 3/2)^2)`

= `int_1^2 ("d"x)/sqrt((1/2)^2 - (x - 3/2)^2)`

= `[sin^-1 ((x - 3/2)/(1/2))]_1^2`

= `[sin^-1 ((2x - 3)/1)]_1^2`

= `sin^-1 (4 - 3) - sin^-1 (2 - 3)`

= `sin^-1 (1) - sin^-1 (-1)`

= `sin^-1 (1) + sin^-1 (1)`

 = `2 sin^-1 (1)`

= `2 xx pi/2`

= `pi`

Hence, I = `pi`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 31 | Page 165

RELATED QUESTIONS

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×