English

Evaluate the Following Integrals: ∫ ( X + 3 ) √ 3 − 4 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
Sum

Solution

\[Let I = \int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[\text{ We  express  x + 3 }= A\left( \frac{d}{d x}\left( 3 - 4x - x^2 \right) \right) + B\]
\[x + 3 = A( - 4 - 2x) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[1 = - 2A \text{ and 3 } = - 4A + B\]
\[or A = - \frac{1}{2} \text{ and B} = 1 \]
\[ \therefore I = \int\left( - \frac{1}{2}\left( - 4 - 2x \right) + 1 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = - \frac{1}{2}\int\left( - 4 - 2x \right)\sqrt{3 - 4x - x^2} \text{  dx }+ \int\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = - \frac{1}{2} I_1 + I_2 . . . (1)\]
\[\text{ Now, }I_1 = \int\left( - 4 - 2x \right)\sqrt{3 - 4x - x^2} \text{  dx }\]
\[\text{ Let 3 }- 4x - x^2 = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( - 4 - 2x \right)dx = du\]
\[ \therefore I_1 = \int\sqrt{u}du\]
\[ = \frac{2}{3} u^\frac{3}{2} + c_1 \]
\[ = \frac{2}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + c_1 . . . (2)\]
\[\text{ And, I_2 }= \int\sqrt{3 - 4x - x^2} \text{  dx }\]
\[ = \int\sqrt{3 + 4 - 4 - 4x - x^2} \text{  dx }\]
\[ = \int\sqrt{\left( \sqrt{7} \right)^2 - \left( x + 2 \right)^2} \text{  dx }\]
\[ \text{ Let} \left( x + 2 \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = du\]
\[ \therefore I_2 = \int\sqrt{\left( \sqrt{7} \right)^2 - \left( u \right)^2} du\]
\[ = \frac{u}{2}\sqrt{\left( \sqrt{7} \right)^2 - \left( u \right)^2} + \frac{1}{2} \left( \sqrt{7} \right)^2 \sin^{- 1} \left( \frac{u}{\sqrt{7}} \right) + c_2 \]
\[ = \frac{x + 2}{2}\sqrt{7 - \left( x + 2 \right)^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 \]
\[ = \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get }\]
\[ \therefore I = - \frac{1}{2}\left( \frac{2}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + c_1 \right) + \left( \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c_2 \right)\]
\[ = - \frac{1}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c\]
\[\text{ Hence,} \int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }= - \frac{1}{3} \left( 3 - 4x - x^2 \right)^\frac{3}{2} + \frac{x + 2}{2}\sqrt{3 - 4x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{x + 2}{\sqrt{7}} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 12 | Page 159

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×