Advertisements
Advertisements
Question
Solution
\[I = \int\left( 3x + 1 \right)\sqrt{4 - 3x - 2 x^2} \text{ dx }\]
\[\text{ Let }\left( 3x + 1 \right) = A\frac{d}{dx}\left( 4 - 3x - 2 x^2 \right) + B\]
\[ \Rightarrow \left( 3x + 1 \right) = A\left( - 3 - 4x \right) + B\]
\[ \Rightarrow \left( 3x + 1 \right) = - 4\text{ Ax} + \left( B - 3A \right)\]
\[ \Rightarrow 3 = - 4\text{ A and }\left( B - 3A \right) = 1\]
\[ \Rightarrow A = - \frac{3}{4} \text{ and B }= - \frac{5}{4}\]
\[\Rightarrow \left( 3x + 1 \right) = - \frac{3}{4}\left( - 3 - 4x \right) - \frac{5}{4}\]
\[ \Rightarrow I = - \frac{3}{4}\int\left( - 3 - 4x \right)\sqrt{4 - 3x - 2 x^2}dx - \frac{5}{4}\int\sqrt{4 - 3x - 2 x^2}dx\]
\[Let I = - \frac{3}{4} I_1 - \frac{5}{4} I_2 . . . \left( i \right)\]
\[\text{ Now, } \]
\[ I_1 = \int\left( - 3 - 4x \right)\sqrt{4 - 3x - 2 x^2}dx\]
\[\text{ Let } \left( 4 - 3x - 2 x^2 \right) = t, or, \left( - 3 - 4x \right)dx = dt\]
\[ \Rightarrow I_1 = \int\sqrt{t}dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + c_1 \]
\[ \Rightarrow I_1 = \frac{2}{3} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} + c_1\]
\[I_2 = \int\sqrt{4 - 3x - 2 x^2}dx\]
\[ = \int\sqrt{2\left( 2 - \frac{3}{2}x - x^2 \right)}dx\]
\[ = \sqrt{2}\int\sqrt{\left( \frac{17}{4} - \frac{9}{4} - \frac{3}{2}x - x^2 \right)}dx\]
\[ = \sqrt{2}\int\sqrt{\left[ \left( \frac{\sqrt{17}}{2} \right)^2 - \left( \frac{9}{4} + \frac{3}{2}x + x^2 \right) \right]}dx\]
\[ = \sqrt{2}\int\sqrt{\left[ \left( \frac{\sqrt{17}}{2} \right)^2 - \left( x + \frac{3}{2} \right)^2 \right]}dx\]
\[ = \sqrt{2}\sin\left( \frac{x + \frac{3}{2}}{\frac{\sqrt{17}}{2}} \right) + c_2 \]
\[ = \sqrt{2}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + c_2\]
Using (i), we get
\[I = - \frac{3}{4} \times \frac{2}{3} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} - \frac{5}{4} \times \sqrt{2}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + C\]
\[ \therefore I = - \frac{1}{2} \left( 4 - 3x - 2 x^2 \right)^\frac{3}{2} - \frac{5\sqrt{2}}{4}\sin\left( \frac{2x + 3}{\sqrt{17}} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`