English

Evaluate the following: d∫5-2x+x2dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`

Sum

Solution

Let I = `int sqrt(5 - 2x + x^2) "d"x`

= `int sqrt(x^2 - 2x + 5) "d"x`

= `int sqrt(x^2 - 2x + 1 - 1 + 5) "d"x`  ....(Making perfect square)

= `int sqrt((x - 1)^2 + 4) "d"x`

= `int sqrt((x - 1)^2 + (2)^2) "d"x`

= `(x - 1)/2 sqrt((x - 1)^2 + (2)^2) + 4/2 log|(x - 1) + sqrt((x + 1)^2 + (2)^2)| + "C"`  .......`[because int sqrt(x^2 + "a"^2) "d"x = x/2 sqrt(x^2 + "a"^2) + "a"^2/2 {log|x + sqrt(x^2 + "a"^2)|} + "C"]`

= `(x - 1)/2 sqrt(x^2 + 1 - 2x + 4) + 2log |(x - 1) + sqrt(x - 1) + sqrt(x^2 + 1 - 2x + 4)| + "C"`

= `(x - 1)/2 sqrt(x^2 - 2x + 5) + 2log|(x - 1) + sqrt(x^2 - 2x + 5)| + "C"`

Hence, I = `(x - 1)/2 sqrt(x^2 - 2x + 5) + 2log|(x - 1) + sqrt(x^2 - 2x + 5)| + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 17 | Page 164

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×