Advertisements
Advertisements
Question
Solution
\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}}dx\]
\[Let, x - \cos x = t\]
\[ \Rightarrow \left( 1 + \sin x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \sin x \right) dx = dt\]
\[Now, \int\frac{1 + \sin x}{\sqrt{x - \cos x}}dx\]
\[ = \int\frac{dt}{\sqrt{t}}\]
\[ = \int t^{- \frac{1}{2}} dt\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = 2\sqrt{t} + C\]
\[ = 2\sqrt{x - \cos x} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`